A Probabilistic Model for Exteriors of Residential Buildings

L. Fan, P. Wonka
ACM Transactions on Graphics (to be presented at SIGGRAPH), (2016)

A Probabilistic Model for Exteriors of Residential Buildings


Residential Buildings


​We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available data such as aerial images and street view images. First, we propose a parametric model to describe the exterior of a building (with a varying number of parameters) and propose a set of attributes as a building representation with fixed dimensionality. Second, we propose a hierarchical graphical model with hidden variables to encode the relationships between building attributes and learn both the structure and parameters of the model from the database. Third, we propose optimization algorithms to generate three-dimensional models based on building attributes sampled from the graphical model. Finally, we demonstrate our framework by synthesizing new building models and completing partially observed building models from photographs




Website PDF

See all publications 2016