H. Jiang, L. Nan, D.-M. Tan, W. Dong, X. Zhang, P. Wonka
IEEE Transactions on Visualization and Graphics, (2016)
constraint analysis, constraint detection, layout regularization, linear integer programming
In this paper, we address the problem of constraint detection for layout regularization. As layout we consider a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important for digitizing plans or images, such as floor plans and facade images, and for the improvement of user created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate the layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm to automatically detect constraints. In our results, we evaluate the proposed framework on a variety of input layouts from different applications, which demonstrates our method has superior performance to the state of the art.