AgendaTalk Details

Computational Design of Deforming Objects for Advanced Fabrication

16:30 - 17:00 KAUST

I will describe recent progress in the area of computational fabrication towards novel concepts for reproducing objects with nontrivial shapes and topologies. First, I will present FlexMolds, a novel computational approach to automatically design flexible, reusable molds that, once 3D printed, allow us to physically fabricate, by means of liquid casting, multiple copies of complex shapes with rich surface details and complex topology. I will then investigate the design of objects that can self-deform. I will introduce CurveUps, curvy shells that form from an initially flat state. They consist of small rigid tiles that are tightly held together by two pre-stretched elastic sheets attached to them. Our method allows the realization of smooth, doubly curved surfaces that can be fabricated as a flat piece. Once released, the restoring forces of the pre-stretched sheets support the object to take shape in 3D. CurveUps are structurally stable in their target configuration. All approaches will be illustrated with examples.